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ARTICLE INFO ABSTRACT

Keywords: Herein, silver-based metal-organic framework (AgMOF) and its graphene oxide (GO)-decorated nanocomposite
MOF (GO-AgMOF) are proposed for use in emerging biomedical applications. The nanocomposites are characterized,
cancer and hence, in vitro apoptotic and antibacterial features of AgMOF and GO-AgMOF nanomaterials were inves-
tigated. An MTT cytocompatibility assay indicates that these nanomaterials have dose-dependent toxicity in
contact with SW480, colon adenocarcinoma cells. In addition, the cell death mechanism was explored by
analyzing flow cytometry and caspase activity. Furthermore, the expressions of pro-apoptotic and anti-apoptotic
genes were investigated using quantitative polymerase chain reaction (QPCR). Comparing the control group with
the groups treated by the nanomaterials indicates up-regulation of the BAX/BCI2 ratio. We also measured the
minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of these nanomaterials
acting on S. mutans and S. aureus, which indicates excellent antibacterial properties. Showing inhibition effect on
the viability of cancerous cells through apoptosis and antibacterial effects simultaneously, AgMOF and GO-
AgMOF can be regarded as potential therapeutics for cancer.
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1. Introduction

As the leading cause of death worldwide, cancer is expected to cause
13.1 million annual deaths by 2030 [1,2]. Rapid and uncontrolled cell
differentiation is the main characteristic of cancer that causes immature
vascular systems in tumor tissues due to slow vascularization [3]. Cancer
causes mortality by different mechanisms, i.e., infection, hemorrhage,
and neoplastic extension [4]. There are several methods for treating
cancer, including deoxyribonucleic acid (DNA) targeting [5], interfering
with DNA synthesis [6] and preventing cell replication [7] by chemo-
therapy [8], puncturing DNA by radiotherapy [9], and tumor resection.
However, the available therapeutic approaches withal lead to adverse
side effects such as gastritis, fatigue, and bleeding in organs [9-11].
Therefore, developing new therapies with fewer side effects is required
for a better cancer prognosis [12].

Different studies have shown that various nanomaterials including
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gold [13], silver [14], and cerium oxide [15], can be effective anticancer
agents [16]. These nanomaterials’ unique characteristics, including high
surface area, in addition to tunable optical, electrical, and magnetic
properties, have yielded promising applications in clinical trials over the
last 20 years [17-19]. There are diverse mechanisms by which nano-
materials are used for cancer therapy. For instance, some mechanisms
are based on nanomaterials redox activity which has biological effects
on the tumor [20]. Some others are under the interaction of nano-
materials with the human immune system [21,22]; for example, Jia
et al. [23] have shown that targeting dendritic cells by nanomaterials
could be a promising strategy for cancer therapy. However, one of the
challenges regarding cancer therapy is the interference of bacteria in
cancer cell development and treatment [1]. It has been indicated that
some bacteria can mediate and exacerbate cancer by thriving inside
cancerous tissues [24,25]. In addition, microbial infections would
diminish the therapeutic efficacy during the treatment and lead to
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severe difficulties [1,26,27]. Therefore, using nanomaterials with anti-
bacterial properties in cancer treatment is essential [28,29].
Metal-Organic Frameworks (MOFs) are synthetic nanoporous hybrid
materials made of metal cores and organic cross-linkers [30,31]. MOFs
have been scaled down to nano-metric structures, and they combine the
benefits of porous materials and nanostructures [32]. Silver nano-
materials (Ag-Nanomaterials) as one of the metallic cores of MOFs show
antibacterial [33], antiviral [34], and anticancer behavior [14]. Ag-
nanomaterials have been previously applied for treating breast cancer
[35]. However, all traditional carriers suffer from different restrictions
in bio-applications [36]; for example, micelles and liposomes have low
loading capacities [37], and inorganic porous materials suffer from
unacceptable degradability and undesirable toxicity [38]. On the other
side, MOFs possess several advantages; first, due to their tunable
structures, MOFs could have diverse morphologies, sizes, compositions,
and chemical properties, which provide them with multi-functionalities
[39]; second, MOFs possess high loading capacity owning to their large
surface area and high porosity [36]; third, MOFs are bio-degradable
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because of weak coordination bonds [36].

Despite MOFs’ excellent properties and approving applications,
there is still room to improve their biomedical properties by incorpo-
rating additives into their structure. Graphene oxide (GO) is a derivative
of graphene [40] that can hinder MOF aggregation [41], enlarge the
surface area, and enhance its dispersion [42]. Moreover, previous
studies have shown that GO inhibits cancer cells’ migration and tumor
growth [43]. Another critical parameter that makes GO an attractive
candidate in biomedical applications is its high aspect ratio due to its 2D
structure, which causes more interaction with the biological system
[44]. Considering what was stated above, it can be concluded that GO is
one of the most suitable materials that can be added to the MOF-based
composites [45] to improve biomedical properties. Therefore, here in
this study, a previously described novel silver MOF (AgMOF), embel-
lished with GO, denoted as GO-AgMOF [46], has been investigated for
the possibility of its application as an anticancer drug.
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Fig. 1. (a) The chemical structure of GO-AgMOF. (b) The schematic illustration of the GO-AgMOF synthesis process. TEM images of (¢) AgMOF and (d) GO-AgMOF
nanomaterials. (e) FTIR spectra of GO, AgMOF, and GO-AgMOF nanoparticles. (f) The XPS spectra of GO, AgMOF, and GO-AgMOF; the high resolution spectrum of C
1 s is shown for (g) GO, (h) AgMOF, and (i) GO-AgMOF; the high resolution spectrum of Ag 3d is shown for (j) AgMOF and (k) GO-AgMOF. (1) The XRD pattern of

GO-AgMOF.
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2. Materials and methods
2.1. Reagents

Silver nitrate (AgNOs3), 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenylte-
trazolium bromide (MTT), dimethyl sulfoxide (DMSO), dithiothreitol
(DTT), Mueller Hinton broth (M-H broth), and benzene-1,3,5-
tricarboxylic acid (BTC) have been purchased from Merck, Germany.
Caspase-3, —8, and — 9 activity kits were supplied from Abnova,
Thailand. Fluorescein isothiocyanate (FITC)-conjugated Annexin V and
propidium iodide (FITC-Annexin-V/PI) staining kit was from Hoffman-
La Roch Ltd. Switzerland, and RNeasy Plus Mini Kit was from Qiagen,
Germany. cDNA Synthesis Kit was acquired from Prime Script, Japan.
ABI 7300 real-time PCR (also known as quantitative PCR or qPCR)
system was from Applied Biosystems, USA. Ethanol (99.7 %) was pur-
chased from US VWR, and GO (US7906) was provided by U.S. Research
Nanomaterial Inc.

2.2. Nanomaterials fabrication, characterization, and toxicity tests

AgMOF and GO-AgMOF were synthesized based on the method
described by Firouzjaei et al. [46]. First, to synthesize GO-AgMOF, 0.5 g
of BTC in 20 mL of ethanol and 0.5 g of silver nitrate in 20 mL of water
were dissolved for 30 min. In the next step, 50 mg of GO powder was
added to the solution and was sonicated for 1 h using an ultrasonic probe
with 0.5 pulses, 40 W output energy, and 20 kHz frequency (QSonica,
Newtown, Connecticut, USA). The solution was dried in the oven for 24
h at 40 °C. For synthesizing AgMOF, the exact sonication process was
carried out except for the addition of GO in the solution. The schematic
illustration of the fabrication process and chemical formula of GO-
AgMOF are depicted in Fig. 1. Silver nanoparticles were fabricated to
compare the properties of MOFs with other types of nanostructures. In
brief, 5 mL of sodium citrate 0.05 M (TSC, SigmaAldrich) and 5 mL of
silver nitrate 0.05 M were added to 185 mL of distilled water in a cold
bath between 6 °C to 10 °C. The solution was stirred at 3000 rpm for 3
min. After that, 5 mL of sodium borohydride 0.05 M (NaBH4, Sigma-
Aldrich) was dripped slowly. The pH was adjusted to 10 using 1.25 M
sodium hydroxide (NaOH, PANREAC). The nanoparticles obtained and
kept in amber bottles at 4 °C. Transmission electron microscopy (TEM,
FEI Tecnai F-20) was used for physical characterization of nanoparticles.
Attenuated total reflection-Fourier transform infrared (ATR-FTIR; Var-
ian Excalibur FTS-3000) spectroscopy was employed to study the
functional groups of the nanomaterials. Furthermore, the crystalline
structures were probed using X-ray powder diffraction (XRD; XPERT-
PRO). In addition, the X-ray photoelectron spectroscopy (XPS; Bestec,
Germany) equipped with a 100-micron monochromatic Al Ka X-ray
source was utilized to identify the elemental compositions. Dynamic
light scattering (DLS; Nano ZS ZEN 3600) was applied to determine the
size of the nanoparticles. In this process, the samples with half molar
concentration were initially stabilized in water via sonication. Thus, the
volume, intensity, and number of peaks were taken into account to
identify the size distribution. Furthermore, a UV-Vis spectrophotometer
(PerkinElmer LAMBDA 35) was used to acquire the absorption spectra.

Furthermore, the toxicity of the nanomaterials was evaluated by
using an MTT assay. The cell death mechanism was investigated by
quantitative polymerase chain reaction (qPCR), flow cytometry, and
caspase activity. Moreover, the nuclei fragmentation was determined by
Hoechst staining. In addition, S. mutans and S. aureus bacteria were used
to investigate the antibacterial properties of the nanomaterials (discus-
sion regarding antibacterial properties of materials can be found in
supporting information).

2.3. MTT assay test

The first step in evaluating the nanomaterials as a potential candi-
date for cancer treatment is to investigate their cytocompatibility. This
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step was taken by using an MTT assay. Briefly, 1 x 10 cells were seeded
in each well of 96-well tissue culture grade plates and incubated at 37 °C
with 5 % atmospheric CO; for one day. Cells were then treated with
several concentrations of nanomaterials in a decreasing manner (50
down to 0.78 pug/mL for both AgMOF and GO-AgMOF, and 500 down to
7.81 pg/mL for GO). Next, 100 pL of MTT solution was added to each
well. After 4 h of incubation, 100 pL of DMSO was added to each well to
solve formed formazan crystals. At the end, formazan absorbance was
measured at 570 nm.

2.4. Flow cytometry test

FITC-Annexin-V/PI staining kit was used as the cytotoxicity marker to
determine the apoptosis of cells. The rates of cell apoptosis were
measured utilizing flow cytometry. First, 3 x 10° MCF-7 cells were
seeded into each well, treated with 200 pg/mL of each nanoparticle, and
were incubated for 24 h. After that, the trypsinized cells were washed by
PBS and were suspended in Annexin-V binding buffer. Finally, 5 and 10
pL of FITC-Annexin-V/PI solution were added into the driven solution,
and the flow cytometer counted cells.

2.5. Caspase-3, —8, and — 9 multiplex activity assay

Caspase activity kit was used to quantify caspase-3, —8, and — 9
activity in apoptotic cells lysed through incubation with nanomaterials
(44 pg/mL) for 24 h in a 5 % CO2 atmosphere. The lysate was then
centrifuged at 600 g for 5 min, and followingly 50 pL of supernatant was
added to a new test tube. Subsequently, 10 mM DTT dissolved in 50 pL of
2x reaction buffer was added to each sample. Then pNA-conjugated
substrate (200 pM) was added to each tube and followed by incubation
at 37 °C for 2 h. Eventually, the samples were read at 400 nm for ab-
sorbencies to determine caspase activity.

2.6. Antibacterial assessment of the nanomaterials

The dilution method determined minimum inhibitory concentration
(MIC) and minimum bacterial concentration (MBC), i.e., decreasing the
concentrations of AgMOF and GO-AgMOF starting from 500 pg/mL. A
0.5 McFarland suspension of S. mutans and S. aureus was made in
physiological serum with 0.1 optical density. Subsequently, each sam-
ple’s bacteria-containing solution was added to reach the bacteria con-
centration of 10° per mL. Next, the two groups of bacteria samples and
the control sample were incubated at 37 °C for 24 h. The samples’ lowest
concentration that does not show any bacteria growth would be recor-
ded as MIC. The samples were also cultured in agar plates, and the
concentration for which no bacteria growth is observed would be
recorded as MBC.

Following the standards established by the Clinical and Laboratory
Standards Institute (CLSI), M-H Broth is used for determining MIC. To
achieve this, the extracted methanol was diluted to a concentration
range of 7.8-500 mg/mL and then added to the test tubes containing the
medium in a row. After incubating the tubes at 37 °C for 24 h, the
bacteria growth was investigated to determine the minimum concen-
tration which prevented bacterial growth, regarded as MIC. Further-
more, 10 pL of each well’s media was moved to a Mueller Hinton agar
(MHA) plate and thus incubated for another 24 h while in contact with
oxygen. Consequently, the lowest concentration with no bacterial
growth is considered as MBC. Each test was repeated 3 times to ensure
precision.

The overlay method was used to determine the inhibition zone
diameter. First, 5 mL of Luria-Bertani (LB) culture medium was added to
a sterile plate to form the first layer; then, the second layer was formed
by adding another 15 mL. Moreover, 50 pL of different nanomaterials’
concentrations were used to form 6-mm-diameter disks. Hence, the
plates were incubated at 37 °C for 24 h. After that, the zones’ diameters
were measured, and the samples were photographed by a digital camera.
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2.7. Apoptotic gene expressions analysis by qPCR

A gPCR test has been performed to quantify BAX and BCL2 genes
level after treating SW480 cells with AgMOF and GO-AgMOF. For this
purpose, SW480 cells (5 x 10° cells per well) were seeded in a plate in
contact with the nanomaterials and incubated for 24 h. An RNA-
isolation kit was used to isolate mRNA. Then reverse transcription
converts mRNA to its complementary DNA (cDNA) using PrimeScript,
cDNA Synthesis Kit. Finally, the gene expression was studied by ABI
7300 qPCR system using the 2(-Delta Delta C(T)) method (DDCT
method).

2.8. DNA fragmentation test

The DNA fragmentation was detected by staining the treated cells
with a Hoechst fluorescence stain. SW480 cells were grown on sterile,
non-adherent, 12-well plates overnight and treated with nanomaterials
at IC50 concentration. Then 200 pL of paraformaldehyde was added to
the fixed cells and incubated for 20 min at room temperature. After that,
the samples were washed by PBS, and followingly were stained with
100 ng/mL of Hoechst stain and left for 10 h. Finally, the samples were
investigated by optical microscopy.

2.9. Ion release stability of the nanocomposites

The leaching experiments of the nanocomposites were preliminarily
investigated by determining the amount of silver ions released from the
AgMOF and GO-AgMOF. Each material (100 mg) sample was stored in
50 mL of DI water with continuous shaking (150 rpm) for 15 days. The
samples were centrifuged first for each experiment to collect the pow-
ders, and aliquots were taken for inductively coupled plasma mass
spectrometry (ICP-MS). The concentration of silver ions in the DI water
solution was determined by ICP-MS (AA300 Agilent Technologies).

3. Results & discussion

Dysregulation of apoptotic pathways occurs commonly in several
types of malignancies [47]. Using external stimulants like nanomaterials
to induce apoptosis is highly efficient in treating cancer [48]. Previous
studies showed nanomaterials are more biocompatible than conven-
tional therapeutics such as chemotherapy surgery and radiotherapy
[49]. In addition, specificity and fewer side effects give nanomaterials
an advantage in treating cancer [50,51]. Here, after measuring the size
of particles using transmission electron microscopy (TEM) (Fig. 1c-d),
we approached several methods to investigate apoptosis and predict its
mechanism as a result of nanomaterials treatment.

3.1. Unique morphology of AgMOF results in its tumor specificity

TEM was employed to study the morphology of AgMOF and GO-
AgMOF nanomaterials (Fig. 1c-d). The bulk crystalline structure of
AgMOF nanomaterials is observed in TEM images (Fig. 1c). TEM images
are used to determine the particle size, one of the most important pa-
rameters when using nanomaterials. AgMOFs are around 20 nm in
diameter. Compared to the normal vessels with a pore size of 6 to 12 nm,
tumor vessels are more permeable with much larger pores (from 100 to
780 nm). Therefore, nanomaterials can specifically penetrate the tumors
but not the normal vessels [52]. It can be concluded that AgMOF
nanomaterials have desired size (Fig. 1¢). Furthermore, the TEM image
of GO-AgMOF nanocomposite (Fig. 1.d) shows that AgMOF are
embedded adequately into GO layers same as what has been reported by
Firouzjaei et al. [46]. Along with TEM images, FTIR spectra of the GO,
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AgMOF, and GO-AgMOF nanoparticles are shown in Fig. 1e. Regarding
the GO spectrum, the broad peak at ~3411 em ™! is attributed to ~OH
stretching [53]. Carbonyl-associated peaks are observed at 1716 cm™!
and 1619 cm™), respectively assigned to C=0 bonds and hydroxyl
group of carbonyl [54]. In addition, hydroxyl group of tertiary is
responsible for the peak at 1169 cm™! [55]. Similar spectra are observed
for AgMOF and GO-AgMOF. However, the broader peak of GO-AgMOF
compared to that of Ag-MOF in the range of 2600-3600 cm ! is due
to the presence of GO in the structure of GO-AgMOF [55]. The peaks at
700-900 cm ™! are representative of C—H bonding, and the peaks at
1164 and 1195 em ™! are corresponded to C—O group [56,57]. The
peaks detected in the range of 1390-1450 cm ! are associated to C=C
stretching [58,59]. The three peaks appeared approximately at 1682,
1666, and 1607 em™! unveils the reaction between silver ions and
carbonyl groups in trimesic acid [60].

Fig. 1f-k presents the XPS spectra of GO, AgMOF, and GO-AgMOF
nanomaterials. Obviously, the peaks associated to C1 s and O 1 s are
observed in all three spectra. The peaks assigned to Ag 3d are appeared
in the XPS spectra of AgMOF and GO-AgMOF due to the presence of
silver in the structures. Deconvolution of the XPS peaks led to four sub-
peaks for carbon resulting from different functional groups in GO
(Fig. 1g). The peak centered at ~284 eV is attributed to the bonds from
non-oxygenated carbons including C—C and C=C [61]. Two peaks at
~286 and ~ 287 €V are assigned to C-OH and C-O-C, respectively [62].
Additionally, the peak at ~288 eV supports the presence of carboxylate
carbon [63]. Resulted from XPS measurements, the C/O ratio in GO is
about 2.5, and in agreement with the reported values in the literature
[64]. The C 1 s decomposed peak in the spectra of AgMOF and GO-
AgMOF indicates three peaks (Fig. 1h and i); these peaks are at
~284.7, ~285.2, and ~ 288.7 eV, which are respectively assigned to
carbon-carbon bonds (C—C and C—=C), C—0, and C—=0. Moreover, the
extra peak at ~286.9 eV in the spectrum of GO-AgMOF is caused by the
epoxy groups of GO in the structure, verifying the presence of GO.
Furthermore, Ag 3ds,2 and 3ds,, and peaks are observed at ~374.3 and
~ 368.2 eV resulting from bondage between silver and oxygen atoms
(Fig. 1j and k) [65]. Fig. 11 shows the sharp XRD peak at about 260 = 9.7°
represents the (002) crystalline plane of GO with a d-spacing of 0.91 nm
[66], and the peaks at about 20 = 39.1°, 43.9°, 65.4° and 75.0° are
respectively assigned to (111), (200), (220), and (311) face centered
cubic planes of silver [67].

Average sizes of the three nanoparticles are calculated via DLS
analysis and the results are depicted on Fig. 2a. The proper dispersion
with no agglomeration of the AgMOF nanoparticles in GO are congruent
with the average size of GO-AgMOF. The small difference between the
GO-AgMOF size and the sum of AgMOF and GO sizes reveals the trivial
level of agglomeration. XRD was employed to confirm the formation of
crystalline structures resulted from presence of AgMOF nanoparticles on
GO (Fig. 11). UV-vis spectroscopy was performed separately for the GO,
AgMOF, and GO-AgMOF to determine the level of AgMOF interaction
with GO; the result is presented in Fig. 2b. The sharp peak at ~213 nm in
the absorption spectrum of GO is caused by the electronic n-n* transition
of aromatic C—C bonds and the shoulder peak appeared around 300 nm
is due to the n-n* transition of C=0 bonds [68,69]. The observed peak at
around 206 nm for AgMOF is shifted to 209 nm in the spectrum of GO-
AgMOF nanocomposite, revealing the interaction between the GO and
GO-AgMOF nanoparticles.

3.2. Nanomaterials showed cytotoxicity to cancer cells
The cell viability was measured after nanomaterials treatment by the

MTT assay. The results indicate that both AgMOF and GO-AgMOF show
cytotoxicity against the SW480 cancer cell line in a dose-dependent
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Fig. 3. Relative viability of SW480 cells versus (a) GO, (b) AgMOF, (c) GO-AgMOF, and (d) Ag nanoparticles concentration in comparison to the control group.

manner. Fig. 3 presents the relative cell viability versus nanomaterials
concentration. As expected, the cell viability was decreased by
increasing nanomaterials concentration. Drugs can be compared to one
another using the IC50 values which indicate drug concentration that
inhibits growth of tumor cell colony by half. Low IC50 value means that
the drug is effective at low concentrations, and thus will show lower
systemic toxicity when administered to the patient [70]. As shown in
Fig. 3, the IC50 values for GO, Ag nanoparticles, AgMOF, and GO-
AgMOF are 223.6, 66.4, 12.63, and 6.7 pg/mL respectively. So, it can
be concluded that GO-AgMOF has the least IC50 and is more efficient in
treating cancer. One possible reason for more toxicity of AgMOF in
comparison to Ag is intracellular silver delivery of AgMOF controlled by
the extracellular pH, which has been described by ploetz et al. [71]. An
essential step in MOF toxicity is its decomposition to Ag ions and BTC in
lysosome and delivering high amounts of silver ions into the cell.
Nanoscale MOFs with great surface area play a positive role in the
adhesion of cells to the GO-AgMOF react with cancerous cells and
release Ag ions which is toxic while the aggregation of pure Ag nano-
particles leads to reduction of active specific surface area of Ag nano-
particles and its toxicity in contact to cancerous cells [72]. Another
possible mechanism may be that decreased pH value due to BTC pres-
ence caused cell death. The addition of GO to AgMOF has a synergic
effect and decreases tumor cell viability. AgMOFs’ toxicity is due to their
ionic form and nano-metric structure. Determining the exact portion of
each mechanism is challenging. On the one hand, silver ions toxicity is
attributed to nanomaterials transformation in biological media, ion
release, and interlinkage with biological macromolecules [73]. On the
other hand, nanomaterials’ high surface area and surface reactivity

assist toxicity [74]. AgMOF interacts with the proteins on the cell
membrane and stops cell proliferation. They also penetrate mitochon-
dria selectively, causing dysfunction, reactive oxygen species (ROS)
generation, and damaging nucleic acid and proteins inside the cell
[73-76]. Similarly, GO nanosheets decrease cell viability, cause
apoptosis, ruin membrane integrity, change cell morphology, damage
DNA, and prohibit cell adhesion by accelerating ROS generation and
activating the mitochondrial apoptosis pathway [77]. Conclusively, the
cytotoxicity of AgMOF and GO-AgMOF has a significant role in the anti-
tumor activity and reduces tumor progression [77].

3.3. AgMOF and GO-AgMOF induce apoptosis by increasing caspase
activity

Flow cytometry was used to calculate the percentage of apoptotic
cells, and also track apoptotic changes by concurrent staining with
Annexin-V-APC conjugate and propidium iodide (PI) (Fig. 4). Based on
our results, both AGMOF and Go-AgMOF nanomaterials can induce
apoptosis in SW480 cells. As depicted in Fig. 4, untreated cells did not
show any remarkable apoptosis. AgMOF treated cells had 16.1 and 65.4
% early and late apoptotic cells, respectively. The percent of early and
late apoptotic cells for GO-AgMOF were 12.9 and 84.3 %, respectively. It
is rational that the cytotoxic effect of GO-AgMOF nanomaterials acts
slower in comparison to AgMOF nanomaterials. Because AgMOF parti-
cles, due to their smaller sizes (supported by TEM images), can easily
pass through the cell membrane by diffusion while larger GO-AgMOF
particles penetrate the cell with a more time-consuming process.
Hence, it takes a longer time for GO-AgMOF to cause cell death.
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Fig. 4. Flow cytometry images of (a) control, (b) GO, (c) AgMOF, and (d) GO-AgMOF samples.

However, after GO-AgMOF penetration, sharp edges of GO nanosheets
damage the cell membrane leading to loss of membrane integrity. PI
enters the cell through the lost membrane and flags late apoptosis [78].
So, the synergic effect of AGMOF and GO toxicity causes more per-
centage of late apoptosis in comparison to AgMOF [79]. In general, it is
clear that the number of the cells in the early and late stages of apoptosis
increased after treating with both AgMOF and GO-AgMOF nano-
materials which confirms that these nanomaterials can induce apoptosis.

Caspase activity plays a fundamental role in the execution phase of
cell apoptosis [80]. Induction of caspase-8 and -9 (initiator caspase) and
caspase-3 (effector caspase) expression after treating SW480 cells with
AgMOF and GO-AgMOF nanomaterials was measured as markers of

apoptosis. It has been known that caspase-8 cleaves and activates
caspase-3 (effector caspase), which triggers the extrinsic pathway.
Caspase-3 activation is the irreversible point in the apoptosis process
[81]. Caspase-3 activation happens by cleavage and translocation of the
activated caspase into the nucleus, followed by DNA fragmentation,
which is essential in the first steps of apoptosis. The DNA fragmentation
induced by caspase activation can be detected by Hoechst staining.
Simultaneously, the intrinsic or mitochondrial route needs activation of
caspase-9 to initiate caspase-3 activation for apoptotic cell death
[81-84].

As shown in Fig. 5, the caspase activity in cells treated with AgMOF
and GO-AgMOF nanomaterials increased significantly compared to the
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Fig. 5. Caspase-3, —8 and — 9 activity of SW480 cells in contact with (a) AgQMOF and (b) GO-AgMOF nanomaterials.
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Fig. 6. Hoechst staining of SW480 cells in (a) control, (b) GO, (c) AgMOF, and
(d) GO-AgMOF nanomaterials groups.
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control group. The higher caspase expression level in treated groups
reveals apoptosis, leading to abnormal cell elimination, eventually
reducing tumor progression. Significant increase in caspase-3, —8, and
— 9 activity in treated cells with AgMOF and 2.3-, 1.89-, and 1.70-fold
increase in treated cells with GO-AgMOF indicates the nanomaterials’
effectiveness in increasing apoptosis.

As stated above, caspase activation leads to DNA fragmentation
which is one of the early stages of apoptosis [83]. The DNA fragmen-
tation of cancerous cells due to the addition of nanomaterials was
analyzed using Hoechst fluorescent stain (Fig. 6). After treating SW480
cells with 20 pg/mL of nanomaterials, cells started to show apoptotic
characteristics such as DNA fragmentation. As shown in Fig. 6, the cells
have regular, rounded morphology and intact nuclear structure in the
control group. In treated samples, caspase cascade activation cleaves the
determined substrate, which is responsible for DNA repair. Fragmented
nuclei, as another hallmark of apoptosis [85], are shown as granules
with various sizes stained homogeneously. DNA is shown in a dispersed
form. Previous studies show that GO changes the membrane of
cancerous cells by targeting the microtubules of the cytoskeleton and
damaging them [86]. So, the cell loses its original shape and structural
integrity [86].

3.4. Apoptotic gene expressions analysis by gPCR

Pro-apoptotic BAX and anti-apoptotic BCl2 genes are members of
BCI2 family proteins that play essential roles as regulators in the mito-
chondrial apoptotic pathways [87,88]. BCI2 suppresses apoptosis while
BAX contains BH1-3 domains and creates proteolipid pores responsible
for cytochrome C release that permeabilizes the outer membrane of
mitochondria [89-92]. Therefore, increasing BAX/BCI2 expression ratio
causes caspase-3 activation and indicates apoptosis which helps in the
cancer treatment [93]. Here, we carried out a qPCR test to analyze the
changes in expression of these genes after nanomaterials addition
(Fig. 7). BAX/BCL2 ratio significantly increased for both AgMOF and
GO-AgMOF nanomaterials, showing caspase-dependent apoptosis is the
mechanism leading to cell death.

3.5. The stability of nanocomposites

A promising feature of MOFs is their potential to prevent the un-
controlled release of ions during their long-term operation. As shown in
Fig. 8, both AgMOF and GO-AgMOF released <50 (pg/L) silver ions.
MOF structure acts as reservoirs of silver, promoting the sustained and
gradual leaching of this metal ion to achieve prolonged anticancer ac-
tivity of the nanocomposites. However, AgMOF has a marginal higher
release rate compared to GO-AgMOF. However, the chemical structure
of GO-AgMOF provides an insight into this feature. The possible inter-
action between silver ions and negatively charged functional groups GO
me be responsible for lower release rates of GO-AgMOF compared to
AgMOF.

4. Conclusion

Our findings indicate that AQMOF and GO-AgMOF nanomaterials
cause cancerous cells apoptosis and have antibacterial properties. These
nanomaterials induce apoptosis via intrinsic and extrinsic pathways by
activating caspase-3, —8, and — 9 in a dose-dependent manner. MTT test
results show a reduction in SW480 cells viability with increasing con-
centrations. Increasing BAX/BCI2 ratio and percentage of early and late
apoptotic cells compared to necrotic cells and fragmented nucleus and
DNA are all evidence that confirms apoptosis. Furthermore, the results
obtained from measuring MBC/MIC showed the great antibacterial ac-
tivity of AgMOF and GO-AgMOF against S. mutans and S. aureus and the
higher toxicity of GO-AgMOF compared to AgMOF. The MBC/MIC ratio
is <4 for all four cases, verifying that both nanomaterials can be
considered bactericides. The antibacterial activities are similar to
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commercially available anticancer drugs such as thioguanine and
methotrexate against S. aureus. This preliminary cell cytotoxicity study
of AgMOF and GO-AgMOF nanomaterials could provide a pathway to
understanding cell-nanomaterials interaction’s holistic mechanism.
Finally, our results suggest that both AgMOF and GO-AgMOF nano-
materials could be potential antimicrobial candidates for anticancer
therapy using the apoptosis method. Fig. 9 schematically summarizes
the mechanism behind the antineoplastic effect of AgMOF and GO-
AgMOF.
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